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In this study, we introduce a new generalization of the Fibonacci se-
quence, which we call the Copper Fibonacci sequence, that converges to
the copper ratio. Also, drawing inspiration from the definition of the Cop-
per Fibonacci sequence, we the Copper Lucas sequence and investigate the
relationships between the terms of both sequences. We examine several
properties of these sequences, including Binet-like formulas and generating
functions. In addition, we explore the relationship between the roots of the
characteristic equation of these sequences and their general terms. Interest-
ingly, the relationships derived from the connection between the roots and
the terms of these new sequences hold true for both roots. Moreover, we
introduce the application of these sequences to polynomials. We examine
the relations between the terms of the Copper Fibonacci and Copper Lucas
polynomials and two consecutive terms. Lastly, we derive special identities
associated with these polynomials.
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[21] E. Özkan, M. Taştan, On Gauss Fibonacci polynomials, on Gauss Lu-
cas polynomials and their applications, Communications In Algebra
48(3)(2020), 952-960. DOI: 10.1080/00927872.2019.1670193


