ISOLATION OF 3-VERTEX PATHS

KARL BARTOLO, PETER BORG AND DAYLE SCICLUNA

University of Malta

e-mail: karl.bartolo.16@um.edu.mt, peter.borg@um.edu.mt, dayle.scicluna.09@um.edu.mt

The P_3 -isolation number of a connected *n*-vertex graph G, denoted by $\iota(G, P_3)$, is the size of a smallest subset D of the vertex set of G such that the closed neighbourhood N[D] of D in G intersects each P_3 -copy in G (equivalently, no two edges of G - N[D] intersect). The concept of \mathcal{F} -isolation for a general set \mathcal{F} of graphs was first introduced by Caro and Hansberg [2]. The sharp upper bound $\iota(G, P_3) \leq 2n/7$ for a connected *n*-vertex graph G which is not a $\{P_3, K_3, C_6\}$ -graph was established by Zhang and Wu [5], and independently by Borg [1] in a stronger form.

The graphs attaining the bound 2n/7 have been determined in [3] and [4]. Infinitely many of these graphs have induced 6-cycles. Our investigation focuses on how the upper bound on $\iota(G, P_3)$ improves upon considering connected graphs G which do not have induced 6-cycles. The resulting sharp upper bounds on $\iota(G, P_3)$ obtained along with some of the resulting extremal structures are some of the first of their kind in the current study of \mathcal{F} -isolation numbers of graphs.

References

- P. Borg, Isolation of connected graphs, Discrete Appl. Math. 339 (2023), 154–165.
- [2] Y. Caro and A. Hansberg, Partial domination the isolation number of a graph, Filomat 31:12 (2017), 3925–3944.
- [3] J. Chen, Y. Liang, C. Wang and S. Xu, Algorithmic aspects of $\{P_k\}$ isolation in graphs and extremal graphs for a $\{P_3\}$ -isolation bound, Inf. Process. Lett. 187 (2025), paper 106521.
- [4] Q. Cui, J. Zhang and L. Zhong, Extremal graphs for the $K_{1,2}$ -isolation number of graphs, Bull. Malays. Math. Sci. Soc. 47 (2024), paper 115.
- [5] G. Zhang and B. Wu, $K_{1,2}$ -isolation in graphs, Discrete Applied Mathematics 304 (2021), 365–374.